Warning: Use of undefined constant description - assumed 'description' (this will throw an Error in a future version of PHP) in /homepages/32/d763672482/htdocs/clickandbuilds/CNCMakerZone/wp-content/plugins/thingiverse-embed/thingiverse-stream-widget.php on line 12
April 15, 2019 – CNC Maker Zone

3D printing a CNC control box for switches and a voltage/current meter

Recently I realised that my CNC setup was getting a bit complicated. For one thing, I was using three separate power adaptors: one each for the CNC itself, my 5W LASER module and the extractor fan I previously wrote about. The CNC machine has a 24V supply, whereas the other two use 12V. Also, I had separate switch locations for the CNC and fan, while the LASER had no control switch: basically power supply on and off was simply plugging or unplugging the mains plug. While still perfectly usable, I decided it was time to change that setup for something better: the 3D printed control box shown in the photo below.

The front view of the 3D printed CNC control box

As you can see, I decided to make it not just functional, but also visually in-line with a more professional look than you might expect for a cheap CNC machine. So I decided to paint it, add some inkjet-printed water-slide transfers, then clear coat it. The bumpers I gave a few coats of brass-look paint and clear coat. To finish them off I LASER-cut inserts from 1.5mm Mahogany sheet which I finished with Danish oil and some clear coat, lightly sanded to give an old-style effect. It’s not perfect, but I’m quite pleased with how it turned out.

Electrically the box contains a 24V input from my CNC power supply, which goes through an automotive voltage/current meter straight to the CNC control board. Then I connected an automotive 24V to 12V regulator to the 24V output and ran the 12V through the white switches to the LASER module and fan, together with a 12V supply for adding lights later. The spindle motor simply connects through the switch, so it can be used to isolate the motor power, as a replacement for my previous spindle switch project. And to give an idea of how I connected the box to those parts I’ve put a photo of the rear of the box below.

A view of the rear of the box showing the DC sockets

So, finally, if you’d like to make your own version why not click here to go to the Thingivers.com page, where you can download the 3D printing files, the OpenSCAD code for adapting if necessary, the water-slide transfer images and a file for LASER-cutting the end inserts too.

Tagged : / / / / / /

3D printed bed risers for a quick and inexpensive increase in cutting area

Size isn’t always the most important thing when selecting a CNC machine. For example, I have a small and inexpensive Chinese 1610 machine, which has a bed 160mm wide and 100mm deep. For the kind of Maker things I do the small size isn’t a problem: in fact it works quite well in my equally small work zone. However, for LASER-cutting I wanted a little more distance along the Y-axis so I looked into how to simply modify the machine.

Obviously I could just replace some side frame parts, along with a couple of guide rods and a lead-screw, making the plan area whatever I’d like. However, that seemed like overkill for my needs so I thought a little more and came up with a very inexpensive way to up my cutting size to 160mm by 140mm. An extra 40mm doesn’t sound much, but for a lot of projects it makes a big difference. And, all it took was a bit of 3D printing filament and ten new hold-down bolts. You can see the results in the photo below.

A view of the bed risers from the front of the bed

The risers just raise the bed up a few millimeters but, together with moving the guide rod slider blocks in by one slot, they allow the bed to ride over the guide rod mounts. That riding over is what gives the extra 40mm. I decided that 20mm of overhang front and back during cutting wouldn’t be a problem, which saves the cost of buying a new 160x100mm 2020-section aluminium bed. The original bolts used to mount the bed were 10mm long, so I replaced them with 16mm ones which fitted perfectly. I also took the opportunity to replace the drop-in T-nuts with slide in ones, which gives me more confidence that the bed is properly fixed down. You can see how I fitted the risers, and moved the blocks, in the photo below.

A view of the risers and block adjustments underneath the CNC bed

If you’d like to make your own risers you can get the 3D printing files, and the OpenSCAD design in case you want to make adjustments, by clicking here to go to the Thingiverse.com page.

Tagged : / / / /